Skip to content Skip to navigation

Courses

  • The built environment and the energy systems that meet its requirements is a product of decisions forged in a context of historical inequity produced by cultural, political, and economic forces expressed through decisions at individual and institutional levels. This interdisciplinary course will examine the imprint of systemic racial inequity in the U.S. that has produced a clean energy divide...

  • The built environment and the energy systems that meet its requirements is a product of decisions forged in a context of historical inequity produced by cultural, political, and economic forces expressed through decisions at individual and institutional levels. This interdisciplinary course will examine the imprint of systemic racial inequity in the U.S. that has produced a clean energy divide...

  • Review of root-locus and frequency response techniques for control system analysis and synthesis. State-space techniques for modeling, full-state feedback regulator design, pole placement, and observer design. Combined observer and regulator design. Lab experiments on computers connected to mechanical systems. Prerequisites: 105, MATH 103, 113. Recommended: Matlab.

  • Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. Root-locus and frequency response design techniques. Examples from a variety of fields. Some use of computer aided design with MATLAB. Prerequisites: Dynamics systems (EE 102B or ME 161), and ordinary differential equations (CME 102 or Math 53). This course will include...

  • Be part of a unique course about extreme energy efficiency and integrative design! We will meet once a week throughout the quarter. E^3 will focus on efficiency techniques' design, performance, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse...

  • Be part of a unique course about extreme energy efficiency and integrative design! We will meet once a week throughout the quarter. E^3 will focus on efficiency techniques' design, performance, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse...

  • The course will describe the background on existing energy storage solutions being on the electric grid and in vehicles with a primary focus on batteries and electrochemical storage. It will discuss the operating characteristics, cost, and efficiency of these technologies and how tradeoff decisions can be made. The course will describe the system-level integration of new storage technologies,...

  • Transportation accounts for nearly one-third of American energy use and greenhouse gas emissions and three-quarters of American oil consumption. It has crucial impacts on climate change, air pollution, resource depletion, and national security. Students wishing to address these issues reconsider how we move, finding sustainable transportation solutions. An introduction to the issue, covering...

  • (Formerly 223B) An introduction to the concepts and applications in computer vision. Topics include: cameras and projection models, low-level image processing methods such as filtering and edge detection; mid-level vision topics such as segmentation and clustering; shape reconstruction from stereo, as well as high-level vision tasks such as object recognition, scene recognition, face detection...

  • Analysis and design techniques for multivariable feedback systems. State-space concepts, observability, controllability, eigenvalues, eigenvectors, stability, and canonical representations. Approaches for robust feedback control design, chiefly H2, H-infinity, and mu-synthesis. System identification and adaptive control design. Use of computer-aided design with MATLAB. Prerequisite: ENGR 105,...

Pages