Skip to content Skip to navigation

Courses

  • (Formerly 223B) An introduction to the concepts and applications in computer vision. Topics include: cameras and projection models, low-level image processing methods such as filtering and edge detection; mid-level vision topics such as segmentation and clustering; shape reconstruction from stereo, as well as high-level vision tasks such as object recognition, scene recognition, face detection...

  • Analysis and design techniques for multivariable feedback systems. State-space concepts, observability, controllability, eigenvalues, eigenvectors, stability, and canonical representations. Approaches for robust feedback control design, chiefly H2, H-infinity, and mu-synthesis. System identification and adaptive control design. Use of computer-aided design with MATLAB. Prerequisite: ENGR 105,...

  • Visual computing tasks such as computational photography, image/video analysis, 3D reconstruction, and real-time 3D graphics are key responsibilities of modern computer systems ranging from sensor-rich smart phones, autonomous robots, and large data centers. These workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and challenges associated with...

  • Energy is a fundamental driver of human development and opportunity. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. For example, energy production and use is the number one source of greenhouse gas emissions. In taking this course, students will not only understand the fundamentals of each energy resource --...

  • Energy is a fundamental driver of human development and opportunity. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. For example, energy production and use is the number one source of greenhouse gas emissions. In taking this course, students will not only understand the fundamentals of each energy resource --...

  • Energy is a fundamental driver of human development and opportunity. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. For example, energy production and use is the number one source of greenhouse gas emissions. In taking this course, students will not only understand the fundamentals of each energy resource --...

  • Environmental, economic, and equity aspects of urban transportation in 21st-century U.S. Expanded choices in urban and regional mobility that do not diminish resources for future generations. Implications for the global environment and the livability of communities.

  • Two-quarter project course. Focus is on real-world software development. Corporate partners seed projects with loosely defined challenges from their R&D labs; students innovate to build their own compelling software solutions. Student teams are treated as start-up companies with a budget and a technical advisory board comprised of instructional staff and corporate liaisons. Teams will...

  • Continuation of CS210A. Focus is on real-world software development. Corporate partners seed projects with loosely defined challenges from their R&D labs; students innovate to build their own compelling software solutions. Student teams are treated as start-up companies with a budget and a technical advisory board comprised of the instructional staff and corporate liaisons. Teams will...

  • Review of root-locus and frequency response techniques for control system analysis and synthesis. State-space techniques for modeling, full-state feedback regulator design, pole placement, and observer design. Combined observer and regulator design. Lab experiments on computers connected to mechanical systems. Prerequisites: 105, MATH 103, 113. Recommended: Matlab.

Pages