Skip to content Skip to navigation

Courses

  • Understanding Energy - Field Trips takes students on trips to major energy resource sites located within a few hours of Stanford University. Students visit at least two of the many field trips offered, including to a nuclear power plant, a wind farm, a geothermal facility, a solar photovoltaic (PV) farm, a hydroelectric power plant, an oil field, and a natural gas-fired power plant, among...

  • Understanding Energy - Field Trips takes students on trips to major energy resource sites located within a few hours of Stanford University. Students visit at least two of the many field trips offered, including to a nuclear power plant, a wind farm, a geothermal facility, a solar photovoltaic (PV) farm, a hydroelectric power plant, an oil field, and a natural gas-fired power plant, among...

  • Understanding Energy - Field Trips takes students on trips to major energy resource sites located within a few hours of Stanford University. Students visit at least two of the many field trips offered, including to a nuclear power plant, a wind farm, a geothermal facility, a solar photovoltaic (PV) farm, a hydroelectric power plant, an oil field, and a natural gas-fired power plant, among...

  • Energy is one of the world's main drivers of opportunity and development for human beings. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. For example, energy production and use is the #1 source of greenhouse gas emissions. This course surveys key aspects of each energy resource, including significance and potential...

  • Energy is one of the world's main drivers of opportunity and development for human beings. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. For example, energy production and use is the #1 source of greenhouse gas emissions. This course surveys key aspects of each energy resource, including significance and potential...

  • Energy is one of the world's main drivers of opportunity and development for human beings. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. For example, energy production and use is the #1 source of greenhouse gas emissions. This course surveys key aspects of each energy resource, including significance and potential...

  • Environmental, economic, and equity aspects of urban transportation in 21st-century U.S. Expanded choices in urban and regional mobility that do not diminish resources for future generations. Implications for the global environment and the livability of communities.

  • Two-quarter project course. Focus is on real-world software development. Corporate partners seed projects with loosely defined challenges from their R&D labs; students innovate to build their own compelling software solutions. Student teams are treated as start-up companies with a budget and a technical advisory board comprised of instructional staff and corporate liaisons. Teams will...

  • Continuation of CS210A. Focus is on real-world software development. Corporate partners seed projects with loosely defined challenges from their R&D labs; students innovate to build their own compelling software solutions. Student teams are treated as start-up companies with a budget and a technical advisory board comprised of the instructional staff and corporate liaisons. Teams will...

  • Review of root-locus and frequency response techniques for control system analysis and synthesis. State-space techniques for modeling, full-state feedback regulator design, pole placement, and observer design. Combined observer and regulator design. Lab experiments on computers connected to mechanical systems. Prerequisites: 105, MATH 103, 113. Recommended: Matlab. (Rock)

Pages